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Influence of the electron distribution function shape on nonlocal electron heat transport
in laser-heated plasmas
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A nonlocal model of electron heat flow in laser-heated plasmas taking into account the super-Gaussian
deformation of the electron velocity distribution function by the laser heating was developed. Based on
comparisons to Fokker-Planck simulations of hot spot heating, it performs better than previous models. The
growth rate of thermal filamentation is considerably changed by this thermal conductivity modification. First
results from a formula describing the isotropic componég(x,v), of the electron velocity distribution
function as a spatial convolution over local Maxwellians are also presented.
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In modeling plasma dynamics with hydrodynamic equa-and therefore correct temperatudefined asé average en-
tions, classical Spitzer-Hia (SH) [1] thermal conductivity is  ergy) profiles, important properties of the plasma would still
used to obtain the electron heat flux from the local temperabe incorrectly calculated: Non-Maxwellian distribution func-

ture gradient: Go= — ksV Te. This formula breaks down if tions have important effects on id@cousti¢ and electron
the temperature gradient is steep, and this sets in at a rathdrangmuiy plasma waves, and hence on Brillouin and Ra-
low value of M/L, the ratio of the mean free path to the Man stimulated scattering instabiliti¢33], as well as on
temperature scale lengf@—9. In laser-heated plasmas, such rates of ionization and excitation and x-ray spe¢fré—16,
steep gradients often occur. Ad hoc flux limiting, i.e., limit- hence the desirability of obtaining these without the very
ing the classical heat flux to a fractidiof the free-streaming high computational cost of kinetic simulations. The measure
flux [ Qma=f(ksTo)¥% Vmg] is an often-used devidd 0], but o_f success for both goals is by comparison to electron kinetic
it is not satisfactory both because of the arbitrary value offimulations. A key aspect of the problem is the fact that, even
f—usually, it is varied until agreement with experiment is N @ uniform plasma, inverse bremsstrahlungllisiona) la-
obtained—and because it does not describe preheating at tAg heating tends to create a super-Gaussian or “DLM”
foot of the heat front. A considerable improvement was(Dum-Langdon-Matte  distribution  function  fn(v)
brought by nonlocal heat-flow formulas, which consist of = Cm€X{—(v/vy)"™] [15-18, where the indexm is an in-
spatial convolutions over the classical SpitzérHaeat flux ~ creasing functiori15,16 of the parameter = Z(v osc/v)?,
[4-9)], and the large range of their kernel reflects the fact tha@nd 2<m=5, with m=2 corresponding to the Maxwellian
heat flow is carried by high-energy electrons, whose meat€ak heating limit andn=5 to the strong heating limit
free path is much longer than that of the bulk. However,when the heating is much more rapid than relaxation by
there have been recent reports of unsatisfactory performangdectron-electron collision§l7]. Here, Z is the ion charge

in simulating plasmas heated by intense laser beams. X-ragtate,v,s=|€E|/mewq is the velocity of oscillation of the
line ratio measurements during double short pulse experielectrons in the laser fielH, vin=(kgTe/mg) Y2 is the elec-
ments by Kieffer's groug11] could not be properly simu- tron thermal velocity, and, is the laser angular frequency.
lated with a hydrodynamic simulation using the Epperlein-Mora and Yahi have shown analytically that, for small gra-
Short [6] nonlocal heat-flow formula, but the line ratios dients, such distributions lead to a strongly reduced thermal
could be reproduced either with an electron kinetic code oconductivity [19]. This aspect of the problem was not in-
by assuming an arbitrary flux limit=0.07 in the hydrody- cluded in almost all previously published nonlocal heat-flow
namic code simulation. More recently, Brunner and Valeoformulas[4-9].

performed extensive electron kinetic simulations of multiple  Two numerical codes were used in the present wipk:
and single hot spot heating, in both planar and cylindricalThe hydrodynamic codaybro+, which solves the electron
geometry[12]. Comparing the temperature profiles com- heat diffusion equation with either our nonlocal heat-flow
puted in some of these with hydrodynamic simulations usingormula, one of several previously published ones, or the
one of these nonlocal heat-flow formulas, that of Bychenkovmore traditional flux limiter; and(ii) the electron kinetic

et al.[7-9], they found good agreement at low intensity, butcoderpi [3,13—-16,2(, which was used both to develop our
a large discrepancy at high intensifg2]. Therefore, our formula, and as a basis for comparison of heat-flow models.
chief objective here has been to develop an improved deBriefly, Fpiis one-dimensionallD) (planajy in space and 2D
scription of nonlocal electron heat flow in the presence ofin velocity space¢,u=uv,/v), with a Legendre polynomial
strong collisional heating. A second goal was to develop arexpansion for the. dependence, which was carried to order
analogous convolution formul@ver local Maxwelliansto 3 in this work. The included physical processes are advection
estimate the deformation of the distribution function by the(transport term,v,JF/dx), a self-consistent space-charge
combined effects: transport and heating. This is importanfield for quasineutrality and the resulting acceleration
because, even if we have a very accurate heat-flow algorithin— (eE/m)dF/dv,], Fokker-Planck terms for electron-ion
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and electron-electron collisions, and heating by collisional 10°5
absorption(inverse bremsstrahlung, or JBusing the kinetic

heating operator described in RgL7]. To isolate transport
phenomenology, the same laser intensity profile was imposed

in both codes. The ions were either immobile or considered

as a cold fluid. As an option, the ponderomotive pressure was 107
included as a simple force term.

CH Z=53

We now turn to the development of our nonlocal heat- 3’
flow formula. Usually the nonlocal heat flux is expressed as = AM:
a convolution over the Spitzer-ira flux with a nonlocal 13 -y 1-a=001
kernel. This form was first derived from the Fokker-Planck 2a=01
equation by Luciani and Morp4] and was used later in all Fa=1
published nonlocal mode[gl—9]. We will therefore use this 4a=5
notation for the nonlocal heat flux, i.e., Sa=10
o 10° N P A R P
a00= [ wexonasxnax, @ I A
whereqgy is the Spitzer-Han flux, w is the nonlocal propa- FIG. 1. Thermal conductivity correction obtained by our
gator or kernel, Fokker-Planck code for CHZ=5.3), as a function ok\. at dif-

ferent values of the Langdon parametef o= Z(v ysc/v) ]

X Ne(X”)
§xx’)= {(X",2) ‘ J Ne(X' ) from the thermal bulk and then the real heat carriers are less
energetic and hence more collisional and less effective to
Ne(X',Z) =0/ vei 2 carry the heat flow. This is principally due to the fact that the
mean free path of these 3. electrons is longer than the
\e is the electron mean free path, whilg; is the mean perturbation wavelength, so that their spatial modulation is
electron-ion collision frequency at velocityy, . effectively reduced by transport effects for the case of tow
To account for the “DLM” distribution’s effect, we intro- For the super-Gaussian case or at higheven for long
duce ana dependence into the propagators. To evaluatavavelengths, the heat-flow carriers~2.8v4,) already have
these, we have run our electron kinetic cod®" in a per-  shorter mean free path length and are then not decoupled
turbation mode following the method used by Epperlein androm the thermal bulk of the electron velocity distribution
Short[21], whose work was the first to address the issue ofunction (EVDF), which means a more effective thermal
nonlocal heat-flow modification due to this distribution func- conduction for a super-Gaussian than for a Maxwellian at
tion effect: an initially homogeneous plasma is heated by ahort perturbation wavelengths, in addition to the fact that
uniform laser field with a small intensity modulation. In their spatial modulation is maintained by the modulation of
these runs, the ions are immobile and the ponderomotivéhe intensity. An additional increase of the propagator values
force is not included. We varied the intensity of the laseris observed for all values af as we move to highe£, due to
field from one run to the nextout always imposing a 1% the increase of collisionality.
intensity modulation which directly affected the heating From the inverse Fourier transforms of these
time and the value of. This procedure was done for a large W(k\.,«,Z), we obtained the heat flux propagators. They
number of values of andea, and, for each4,Z), for many  are well fitted by the expression
values ofk\ .. The ratio of the Fourier component of thel

heat flux @~ f f,v°dv) to the SH ondobtained from thepi W(E(X,X',Z),a(X"),Z)
T, modulation, wherél .= 2 average energygave the Fou-
rier transform of the heat flow propagator for this particular _ 1 aifa(x’)]
wave vector, i.e., Ne(X'.Z) | (1+{a [ a(x')]&(x,x",Z)}aalat< )y |’
G(khe,,Z)  k(khg,a,Z (4)
Vv(k)\e,a,Z)=q( e,a,Z)  K(K\e,@,7) 3

GsH(khe,Z)  Ksp(khe,Z)
where the parametess;, a,, az have a dependency om

For example, the results for plastic CZ+45.3) at several that can be approximated as follows:

values of« are plotted in Fig. 1. It is seen that for long

wavelengths, the conductivity is reduced for higheras a;(a)=0.016 913 66317328560 024 025 95,

noted in Ref.[19], but the opposite is true at short wave-

length. To explain this behavior, we have examined the per-

turbed distribution functions in detdihot shown, and found

that for a Maxwellian distribution function but higt\ ., the

traditional heat carrier electrong £3.7vy,) are decoupled ag(a)=0.414 361 44934565593 0,898 267 64.

a,(a)=0.596 959 85%*-516 53499 0. 096 182 82,
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FIG. 3. Comparison of the heat-flux profiles in a laser-heated

FIG. 2. Comparison of the temperature profiles in a laser-heateglasma(®) Fokker-Planck result§rpi), (*) our newly developed
plasma(®) Fokker-Planck result§rrl), (*) our newly developed model(AM), and other published nonlocal modelg{J) Luciani-
model (AM), and other published nonlocal modelq{]) Luciani- Mora-Virmont [4], (O) Luciani-Mora-Bendib[5], (A) Epperlein-
Mora-Virmont [4], (O) Luciani-Mora-Bendib[5], (A) Epperlein-  Short [6], and (+) Bychenkov-Rozmus-Tikhonchuk-Brantdv].
Short [6], and (+) Bychenkov-Rozmus-Tikhonchuk-Brantdi]. lo=10" W/cn?, Z=11. FWHM (tempora) 200 ps and FWHM
1,=10" W/cn?, Z=11. FWHM (tempora) 200 ps and FWHM (spatia) 38 um. The profiles are presented at the laser-pulse maxi-
(spatia) 38 um. The profiles are presented at the laser-pulse maximum (200 p3.

mum (200 p3. . . S .
(200 ps pulse obtained with our electron kinetic codel with that

Note thata is evaluated at the source point,, in Eq.(4):  obtained with our Eulerian hydrodynamic codepro+ us-
This is because the physics involved is the modification ofng our nonlocal heat-flow modéAM) and with other non-
the source for the heat flux, due to the non-Maxwellian eleclocal heat-flow models of Luciart al. (LMV [4], LMB [5])
tron distribution there. This formula was included in our and the more recent formulas of Epperlein and St®®]6])
HYDRO+ code to give the nonlocal heat flux. The reductionand of Bychenkowt al. (BRTB [7-9]). We have presented
of the absorption calculated by Langdon as a functiomrof in Figs. 2 and 3 just one-half of the temperature and heat flux
[17] is included in the code. Also, at high intensities, a fur- Profiles because of the symmetryBf and the antisymmetry
ther reduction of absorption occurs, due to the finite value oPf de With respect tax=0, which is due to the fact that the
the ratio vo/vy, and is accounted for by the correction laser beam considered here is symmetric and centergd at
factor obtained by Schlessinger and Wrigf22]: (1 =0. As can be seen, our model reproduces the temperature
+U§S‘!vt2h)*3/2, A corresponding(velocity dependentcor- p_rofil_es as weII. as the heat fluxes obtained by the detailed
rection to the electron-ion collision rate is also included inkinétic calculation(Fp) (Te~Jfov*dv, ge~[f10°dv) ex-
the electron kinetic codepi [20]. tremely well and noticeably better than the other nonlocal

As a first application of this formula, we have used thehegt-flo_w models_for the case considered here. The compu-
case of an initially uniform underdense plasma,2  tation time was I|ttle_ more tha_n_that neeo_le(_j for hydrody-
X 10%° cm3, T,=500 eV) heated by a narropull width at ~ namic cglculatlons with the traditional ﬂux—l_lmlt_ed .heat—fllow
half maximum(FWHM) equal to 38um] and intense laser calculation, and very n_1uch Iess_ than the klneth S|.mulat|ons.
beam (=10 W/cn?, Ay=0.53m), as a test bed for the The temperature proflles obtained with flux limitefsot
study of these nonlocal and non-Maxwellian effects. The geShown were very different from thepi one, for any value of
ometry considered here is planar and transverse to the lasile flux limit. We have done similar comparisons in cases
beam propagation, which means that the assumed narroffith different Z and different laser parameters as well as
laser beam is line-focused, with a very long waist and negt@ses with mobile ionéireated as a cold fluid in both codes
ligible attenuation along its direction of propagation. The&nd with and without the ponderomotive for@ecluded here
spatial variation is in the direction normal to the plane con-@S & simple force termand again found excellent perfor-
taining the propagation axis and to tfiefinite) beam width. ~ mance for our heat-flow model. o
To isolate transport effects, the laser intensity profile was AS & second application of our thermal conductivity for-
prescribed to be Gaussian in both tiff&VHM equal to 200 mula,_thls time to ICF(lnerua_I confinement fusiopwe .have
psed and spacdFWHM equal to 38um), and, in the first qsed. it to compute the spatial growth rate of laser filamenta-
runs, ions were kept immobile and the ponderomotive forcdion in @ laser-heated plasma. For this purpose we use the
was not included. This simulates the heating of a preforme@XPression given in Ref6],

k2 c?
- %] (5)

n (KSH) w?
YT YT\ T |22
k®c?

plasma by a single hot spot, as studied in recent experiments K N
by Montgomeryet al.[23]. In Figs. 2 and 3, we compare the K=+ [2_‘3
w

electron temperature and heat flux profiles at the peak of the 2e | Ne K
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FIG. 4. Spatial growth rat& (cm %) as a function of the per-

turbation wave numbek (cm™1); (AM, —) represents our model;
(ES,— — —) the Epperlein-Short mode{P,————) the pondero-
motive filamentation growth ratéAML, —-—-) our model plus the

reduction ofy; due to the Langdon effect: 1,=10" W/cn?;
Ao=1.06um; T,=0.8keV; n./n.,=0.1; Z=53. 2, 1,=25
X 10'° W/en?; No=1.06um; T,=2 keV; n,/n,=0.1; Z=20.

wherek| is the perturbation wave number perpendicular to

the direction of propagatior is the speed of lightw is the
laser frequencys =1—n./n;, and the values oy, and y1
are also defined and given f6],

_ (ponderomotive pressure
7P_(plasma thermal pressyre

(inverse bremsstrahlung heating nate
" (thermal conduction rate acrosio)

YT

and the ratio /gy is that computed from Eq3) and
plotted in Fig. 1 for our mode{AM), and that taken from
Ref. [6] for the curves labeletES).

The results are shown in Fig. 4. If we consider a low

intensity  situation, as in Ref.[6] (case 1: Ig

PHYSICAL REVIEW E 66, 066414 (2002

that the heat conductivity reduction at higlis far less when

«a is high (see Fig. 1, so that thermal conductivity can sup-
press thermal filamentation in this case. A further reduction
of the thermal effects is due to the reduction in absorption
when « is this high: Langdon’s formul@l7] indicates that
absorption is then reduced IR(«)=0.49. The curve AML
reflects thig y; was reduced accordingly in E¢)]. While
noticeable, this effect is less important than the differences
between the thermal conductivity models.

As motioned earlier, in the laser intensity ranges of the
ICF experiments (10-10'° W/cn?) the EVDF (electron
velocity distribution function almost always has a non-
Maxwellian form in the underdense plasma. In the overdense
plasma, there is a surplus of fast electrons due to nonlocal
transport. This can affect other plasma characteristics than
the thermal conductivity or particle transport: atomic physics
(ionization and excitation reaction rajd45], acoustic and
Langmuir wave propagatioii 3], and absorptiofl17]. Thus,
having a correct temperature profile is not sufficient. A
knowledge of the electron distribution function is required to
describe these processes. Toward this end, we have adopted
the same approach as for the nonlocal heat flux, i.e., we
performed a series ofpPI runs for initially homogeneous
plasmas heated by a uniform laser field with a small intensity
modulation. A kernel expression analogous to the one devel-
oped for the heat flukEqg. (3)] was obtained as a ratio of the
Fourier transforms of the calculated EVDfg) and the local
Maxwellian distribution, i.e.,

Tk, a,v)=To(k,a,v)/Fu(k,v). (6)

This implies that

0.6

=103 W/en®, N\o=1.06um, T,=0.8 keV, n./n.=0.1, Z =

=5.3), then we(AM) get nearly the same results as theirs >

(E9), the validity of which was confirmed by the comparison X

with Young’s low-intensity experiment4]. This is so be- - —&— Fokker-Planck
cause, in this case, the electron distribution function is nearly —0O— Langdon
Maxwellian due to the low value of. We also show the jﬁﬁ':;’;’;;:‘::ne
effect of ponderomotivéP) filamentation alone, obtained by

setting yr=0 in Eq. (5), and it is easily seen that thermal

effects are dominant at low intensity. However, higher inten- 01 5 " 1 ' 20 " 20
sities are more relevant to ICF. We have considered a case in

which « is about 11.07case 2: 1,=2.5x 10" W/cn?, \, X, wm

=1.06um, Te=2keV, n./n.,=0.1, Z=20). According to FIG. 5. Isotropic component of the electron EVDF for0;

the Epperlein mode(ES), there would be a Iar_ge enhance- lo=1x 10 W/cm?, \y=0.53um, FWHM (temporal)=200 ps,
ment of the growth rate over the ponderomotive 0REDY ~ FWHM (spatialy=38 um, Z=11.(—®@—) Fokker-Planck solution
thermal effects at all wave vectors, whereas our heat-flowrpj), (— — —) the local Maxwellian distribution,(—*—) our

model (AM) indicates such an enhancement only at lownewly developed model for the EVDR—[J—) the Langdon func-
wave vectors, but none at higher ones. This is due to the facion.
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tion created by the heating mechanism. We have considered
this aspect here, and the results of our nonlocal model
showed a good agreement for the temperature profiles with
Comparisons between the EVDF at zero velocity calculatedhe Fokker-Planck simulation results. Also, this model has
by Eq. (7), the numerical solution of the Fokker-Planck shown important changes in the growth rate of one of the
Equation(Fpl), the local Maxwellian, and the Langdon cor- important parametric instabilities for ICF, filamentation. This
rection to it[17] were made. The value at zero velocity is approach to computing the isotropic part of the EVDF is
particularly important as it determines absorption. An ex-very promising as it will make it possible to reproduce the
ample of the obtained results is illustrated (ffig. 5, for  numerical Fokker-Planck solution by using a set of local
lo=10" W/cn?, \q=0.53um, FWHM equal to 200 psec, Maxwellians, which can be useful in hydrodynamic codes
and 38um, ng/n.=0.2,Z=11. We can see in this example for the modeling of several kinetic effects.
that although this model is rather simple and uses a convo-
lution over local Maxwellians, the results obtained can be We thank Dr. D.S. Montgomery, Dr. V.Yu. Bychenkov, Dr.
considered as a satisfactory approximation to the numericd.B. Afayan, Dr. E.A. Williams, Dr. R.L. Berger, Dr. A.
solution of the Fokker-Planck equation. Maximov, Dr. G.P. Schurtz, Professor J.C. Kieffer, and Dr. F.
In conclusion, we can note that nonlocal effects in plas-Vidal for useful discussions. This research was partially sup-
mas in general, and in laser-created plasma in particular, agorted by the Ministee de I'Education du Quieec and by the
strongly related to the form of the electron distribution func-Natural Sciences and Engineering Council of Canada.
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